Part Number Hot Search : 
MN158418 N7002 DS3906 SEL2110S R6100225 A110A B8279 MB86H01
Product Description
Full Text Search
 

To Download MIC921 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MIC921
Micrel
MIC921
45MHz Low-Power SC-70 Op Amp Final Information
General Description
The MIC921 is a high-speed operational amplifier with a gainbandwidth product of 45MHz. The part is unity gain stable. It has a very low 300A supply current, and features the IttyBittyTM SC-70 and SOT-23-5 package. Supply voltage range is from 2.5V to 9V, allowing the MIC921 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC921 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC921 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables.
Features
* * * * * * * * 45MHz gain bandwidth product 61MHz -3dB bandwidth 300A supply current SC-70 or SOT-23-5 packages 3200V/s slew rate Drives any capacitive load 112dB CMRR Unity gain stable
Applications
* * * * * Video Imaging Ultrasound Portable equipment Line drivers
Ordering Information
Part Number MIC921BM5 MIC921BC5 Junction Temp. Range -40C to +85C -40C to +85C Package SOT-23-5* SC-70
*Contact factory for availability of SOT-23-5 package.
Pin Configuration
IN-
3
Functional Pinout
V-
2
IN+
1
IN-
V-
2
IN+
1
Part Identification
3
A38
4 5
4 5
OUT
V+
OUT
V+
SOT-23-5 or SC-70
SOT-23-5 or SC-70
Pin Description
Pin Number 1 2 3 4 5 Pin Name IN+ V- IN- OUT V+ Pin Function Noninverting Input Negative Supply (Input) Inverting Input Output: Amplifier Output Positive Supply (Input)
Micrel, Inc. * 1849 Fortune Drive * San Jose, CA 95131 * USA * tel + 1 (408) 944-0800 * fax + 1 (408) 944-0970 * http://www.micrel.com
December 2001
1
MIC921
MIC921
Micrel
Absolute Maximum Ratings (Note 1)
Supply Voltage (VV+ - VV-) ........................................... 20V Differentail Input Voltage (VIN+ - VIN-) .......... 4V, Note 3 Input Common-Mode Range (VIN+, VIN-) .......... VV+ to VV- Lead Temperature (soldering, 5 sec.) ....................... 260C Storage Temperature (TS) ........................................ 150C ESD Rating, Note 4 ................................................... 1.5kV
Operating Ratings (Note 2)
Supply Voltage (VS) ....................................... 2.5V to 9V Junction Temperature (TJ) ......................... -40C to +85C Package Thermal Resistance SC70-5 .............................................................. 450C/W SOT23-5 ............................................................ 260C/W
Electrical Characteristics (5V)
V+ = +5V, V- = -5V, VCM = 0V, RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted. Symbol VOS VOS IB IOS VCM CMRR PSRR AVOL VOUT Parameter Input Offset Voltage VOS Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain CMRR > 72dB -2.5V < VCM < +2.5V 3.5V < VS < 9V RL = 2k, VOUT = 2V RL = 100, VOUT = 1V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k positive, RL = 200 negative, RL = 200, Note 5 GBW PM BW SR ISC IS Unity Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current AV = 1, RL = 1k, CL = 1.7pF C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 1300V/s source sink Supply Current Input Voltage Noise Input Current Noise No Load f = 10kHz f = 10kHz 45 20 AV = 1, CL = 1.7pF +1.5 +3.0 -3.25 75 95 70 87 105 84 85 3.7 -3.7 3.0 -2.5 37 46 53 1500 57 40 0.30 12 0.7 0.50 -1.0 -3.0 Condition Min Typ 0.43 1 0.13 0.06 0.6 0.3 +3.25 Max 5 Units mV V/C A A V dB dB dB dB V V V V MHz MHz V/s mA mA mA nVHz pAHz
Electrical Characteristics
V+ = +9V, V- = -9V, VCM = 0V, RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted Symbol VOS VOS IB IOS VCM CMRR Parameter Input Offset Voltage Input Offset Voltage Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio CMRR > 75dB -2.5V < VCM < +2.5V -7.25 75 87 Condition Min Typ 0.4 1 0.13 0.06 0.6 0.3 +7.25 Max 5 Units mV V/C A A V dB
MIC921
2
December 2001
MIC921
Symbol PSRR AVOL VOUT GBW PM BW SR ISC IS Parameter Power Supply Rejection Ratio Large-Signal Voltage Gain Condition 3.5V < VS < 9V RL = 2k, VOUT = 3V RL = 100, VOUT = 1V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k Unity Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current AV = 1, RL = 1k, CL = 1.7pF C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 2500V/s source sink Supply Current Input Voltage Noise Input Current Noise
Note 1. Note 2. Note 3. Note 4. Note 5.
Micrel
Min 95 75 Typ 105 86 92 +6.5 7.6 -7.6 45 40 61 3200 40 25 59 45 0.36 12 0.7 0.6 -6.2 Max Units dB dB dB V V MHz MHz V/s mA mA mA nVHz pAHz
AV = 1, CL = 1.7pF
No Load f = 10kHz f = 10kHz
Exceeding the absolute maximum rating may damage the device. The device is not guaranteed to function outside its operating rating. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change). Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in "Typical Characteristics."
December 2001
3
MIC921
MIC921
Micrel
Test Circuits
V+ 10F
V+
50
BNC
0.1F
R2 5k 10F
Input 0.1F 10k 10k 50
BNC
2k
3 5
BNC
Input
4 BNC
R1 5k R7c 2k R7b 200 R7a 100 R6 5k
3
5
0.1F
4 BNC
MIC921
1 2
Output
MIC921
1 2
Output
10k
0.1F
0.1F 50
All resistors 1%
Input 0.1F
R3 200k R4 250
R5 5k V-
10F
All resistors: 1% metal film V-
10F
R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7
PSRR vs. Frequency
CMRR vs. Frequency
100pF
V+
V+ 10F
10pF R1 20
R2 4k
10F
3
0.1F
5
R3 27k S1 S2
3
5
0.1F
4 BNC
MIC921
1 2
To Dynamic Analyzer
MIC921 VIN 50
1 2
4
300
VOUT FET Probe
0.1F 1k
R5 20
R4 27k
0.1F
CL
10pF V-
10F
10F
V-
Noise Measurement
Closed Loop Frequency Response Measurement
MIC921
4
December 2001
MIC921
Micrel
Typical Characteristics
Offset Voltage vs. Temperature
1
SUPPLY CURRENT (mA)
Supply Current vs. Temperature
0.35 0.30 0.25 0.20 0.15 0.10 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) V = 5V V = 2.5V V = 9V
SUPPLY CURRENT (mA)
Supply Current vs. Supply Voltage
0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.20 2.5
OFFSET VOLTAGE (mV)
0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 V = 2.5V
+85C +25C -40C 3.8 5.1 6.4 7.7 SUPPLY VOLTAGE (V) 9
V = 5V V = 9V
0.55 0.5 -40 -20 0 20 40 60 80 100 TEMPERATURE (C)
Offset Voltage vs. Common-Mode Voltage
2.20 2.00 V = 2.5V 1.80 -40C 1.60 1.40 +25C 1.20 1.00 +85C 0.80 0.60 0.40 0.20 0 -900 -540 -180 180 540 900 COMMON-MODE VOLTAGE (V) 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 OFFSET VOLTAGE (mV)
OFFSET VOLTAGE (mV)
Offset Voltage vs. Common-Mode Voltage
OFFSET VOLTAGE (mV)
Offset Voltage vs. Common-Mode Voltage
2.2 2 1.8 1.6 1.4 1.2 +25C 1 0.8 0.6 0.4 0.2 0
-7.40 -5.92
V = 5V -40C
V = 9V -40C
+25C +85C
+85C
1.48 2.96
4.44 5.92
-4.44 -2.96
COMMON-MODE VOLTAGE (V)
COMMON-MODE VOLTAGE (V)
Output Voltage vs. Output Current (Sinking)
0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 V = 5V
OUTPUT VOLTAGE (V)
Output Voltage vs. Output Current (Sinking)
0.9 V = 9V 0 -0.9 -1.8 -2.7 25C -3.6 -4.5 85C -40C -5.4 -6.3 -7.2 -8.1 -9.0 -50-45-40-35-30-25-20-15-10 -5 0 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V)
Output Voltage vs. Output Current (Sourcing)
5.5 V = 5V 5.0 4.5 4.0 85C 25C 3.5 3.0 2.5 -40C 2.0 1.5 1.0 0.5 0 0 8 16 24 32 40 48 56 64 72 80 OUTPUT CURRENT (mA)
OUTPUT VOLTAGE (V)
-40C 25C
85C
-45.0 -40.5
-36.0 -31.5
-27.0
-22.5 -18.0
-13.5 -9.0
OUTPUT CURRENT (mA)
-4.5 0
Output Voltage vs. Output Current (Sourcing)
0.5 V = 9V 0 85C -0.5 25C -1.0 -1.5 -40C -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 0 8 16 24 32 40 48 56 64 72 80 OUTPUT CURRENT (mA)
SHORT CIRCUIT CURRENT (mA)
Short Circuit Current vs. Supply Voltage (Sinking)
7 0 -40C -7 25C -14 -21 -28 -35 85C -42 -49 -56 -63 -70 2.0 3.4 4.8
Short-Circuit Current vs. Supply Voltage (Sourcing)
110 100 90 80 70 60 50 40 30 20 10 0 OUTPUT CURRENT (mA)
OUTPUT VOLTAGE (V)
-40C
-1.48 0
25C 85C
6.2
7.6
9.0
2
SUPPLY VOLTAGE (V)
3.4 4.8 6.2 7.6 SUPPLY VOLTAGE (V)
December 2001
5
7.40
-3.4 -2.7
-2.0 -1.4
-0.7 0.0
0.7 1.4
2.0 2.7
3
9
MIC921
MIC921
Micrel
Bias Current vs. Temperature
0.18 0.16 BIAS CURRENT (A) 0.14
GAIN (dB)
Closed-Loop Gain vs. Frequency
50 40 30 20 10 0 -10 -20 -30 -40 -50 100k
50pF
Closed-Loop Gain vs. Frequency
50 40 30 20
GAIN (dB)
V = 5V
V = 9V
0.12 0.10 0.08 0.06 0.04 0.02 V = 9V
V = 5V
1.7pF 100pF
10 0 -10 -20 -30 -40 -50 100k
50pF
1.7pF 100pF
200pF 400pF 600pF 800pF 1000pF
200pF 400pF 600pF 800pF 1000pF
0.00 -40 -20 0 20 40 60 80 100 TEMPERATURE (C)
100M 10M 1M FREQUENCY (Hz)
100M 10M 1M FREQUENCY (Hz)
Open-Loop Gain vs. Frequency
50 40 30 20 V = 5V
Open-Loop Gain vs. Frequency
50 40 30 20
GAIN (dB)
Open-Loop Frequency Response
100 V = 5V 80 60 40
GAIN (dB)
V = 9V
Phase
(100)
225 180 135 90 45 0 -45 -90 -135 -180 -225
PHASE ()
GAIN (dB)
10 0 -10 -20 -30 -40 -50 100k
200pF 400pF 600pF
50pF 100pF 1.7pF
10 0 -10 -20 -30 -40 -50 100k
50pF 100pF 1.7pF 200pF 400pF 600pF 1000pF
20 0 -20 -40 -60 -80 -100 100k
(no load)
(100)
Gain
1000pF
100M 10M 1M FREQUENCY (Hz)
100M 10M 1M FREQUENCY (Hz)
1M 10M 100M FREQUENCY (Hz)
Open-Loop Frequency Response
100 80 60 V = 9V 225 GAIN BANDWIDTH (MHz) Phase
(100)
Gain Bandwidth and Phase Margin vs. Supply Voltage
50 45 40 35 30 25 20 0 2 4 6 8 SUPPLY VOLTAGE (V) 10 Gain Bandwidth
40
GAIN BANDWIDTH (MHz)
Gain Bandwidth and Phase Margin vs. Load
35 30 25 20 15 10 5
0 100 200
PHASE ()
GAIN (dB)
40 20 0 -20 -40 -60 -80 -100
(no load)
90 45 0 -45
Phase Margin
40 30 20
(100)
Gain
-90 -135 -180 -225
Gain Bandwidth
300 400 500 600 700 800
10
900 1000
0
0
FREQUENCY (Hz)
CAPACITIVE LOAD (pF)
Gain Bandwidth and Phase Margin vs. Load
45
Voltage Noise Density vs. Frequency
60
NOISE VOLTAGE (nV/Hz1/2) 70 60 50 40 30 20 10 0 10 100 1000 10000 100000 FREQUENCY (Hz) NOISE CURRENT (pA/Hz1/2) 2.5 2.0 1.5 1.0 0.5 0 10
Current Noise Density vs. Frequency
GAIN BANDWIDTH (MHz)
40 35 30 25 20 15 10 5 0
V = 9V
Phase Margin
40 30 20
Gain Bandwidth
10
0
900 1000
100 200
300 400
500 600
700 800
0
PHASE MARGIN ()
50
100 1000 10000 100000 FREQUENCY (Hz)
CAPACITIVE LOAD (pF)
MIC921
6
December 2001
PHASE MARGIN ()
180 135
Phase Margin
V = 5V
60 50
MIC921
Micrel
Positive Slew Rate vs. Supply Voltage
NEGATIVE SLEW RATE (V/s)
Negative Slew Rate vs. Supply Voltage
1600 1400
SLEW RATE (V/s)
800 POSITIVE SLEW RATE (V/s) 700 600 500 400 300 200 100 0 2 3 4 5 6 7 8 9
Negative Slew Rate
1400 1200 1000 800 600 400 200
0 100 1000
1M 10M 1000
V = 5V
1200 1000 800 600 400 200 0 0 1 2 3 4 5 6 7 8 9
200 300
400 500
600 700
POSITIVE VOLTAGE (V)
POSITIVE VOLTAGE (V)
LOAD CAPACITANCE (pF)
Positive Slew Rate
1600 1400
SLEW RATE (V/s)
Positive Slew Rate
3500 3000
SLEW RATE (V/s)
Negative Slew Rate
3000 2500
SLEW RATE (V/s)
V = 5V
V = 9V
V = 9V
1200 1000 800 600 400 200
0 900 1000 100 200 300 400 500 600 700 800
2500 2000 1500 1000 500
0 1000 100 200 300 400 500 600 700 800 900
2000 1500 1000 500
0 100 200 300 400 500 600 700 800 900
0
0
0
LOAD CAPACITANCE (pF)
LOAD CAPACITANCE (pF)
LOAD CAPACITANCE (pF)
Positive Power Supply Rejection Ratio
120 100 V = 5V 120 100 PSRR (dB)
Negative Power Supply Rejection Ratio
V = 5V 120 100 PSRR (dB) 80 60 40 20 10k 100k 1k FREQUENCY (Hz) 1M 0 100
Positive Power Supply Rejection Ratio
V = 9V
PSRR (dB)
80 60 40 20 0 100 10k 100k 1k FREQUENCY (Hz) 1M
80 60 40 20 0 100
10k 100k 1k FREQUENCY (Hz)
Negative Power Supply Rejection Ratio
120 100 CMRR (dB) V = 9V
Common-Mode Rejection Ratio
100 90 80 70 60 50 40 30 20 10 0 100 V = 5V
Common-Mode Rejection Ratio
100 90 80 CMRR (dB) 70 60 50 40 30 20 10 0 100 V = 9V
PSRR (dB)
80 60 40 20 0 100 10k 100k 1k FREQUENCY (Hz) 1M
1k 10k 100k 1M FREQUENCY (Hz)
10M
1k 10k 100k 1M FREQUENCY (Hz)
December 2001
7
800 900
0
MIC921
MIC921
Micrel
Functional Characteristics
Small Signal Reponse
V = 5V Av = 1 CL = 1.7pF V = 9V Av = 1 CL = 1.7pF
Small Signal Reponse
INPUT (50mV/div)
OUTPUT (50mV/div)
TIME (100ns/div)
OUTPUT (50mV/div)
INPUT (50mV/div)
TIME (100ns/div)
Small Signal Reponse
V = 5V Av = 1 CL = 100pF V = 9V Av = 1 CL = 100pF
Small Signal Reponse
INPUT (50mV/div)
OUTPUT (50mV/div)
TIME (500ns/div)
OUTPUT (50mV/div)
INPUT (50mV/div)
TIME (500ns/div)
Small Signal Reponse
V = 5V Av = 1 CL = 1000pF V = 9V Av = 1 CL = 1000pF
INPUT (50mV/div)
Small Signal Reponse
OUTPUT (50mV/div)
INPUT (50mV/div)
TIME (1s/div)
OUTPUT (50mV/div)
TIME (1s/div)
MIC921
8
December 2001
MIC921
Micrel
Large Signal Response
V = 5V Av = 1 CL = 1.7pF
Large Signal Response
V = 9V Av = 1 CL = 1.7pF
OUTPUT (2V/div)
OUTPUT (2V/div) Positive Slew Rate = 1520V/s Negative Slew Rate = 1312V/s TIME (25ns/div) Positive Slew Rate = 3230V/s Negative Slew Rate = 2950V/s
TIME (25ns/div)
Large Signal Response
V = 5V Av = 1 CL = 100pF
Large Signal Response
V = 9V Av = 1 CL = 100pF
OUTPUT (2V/div)
Positive Slew Rate = 349V/s Negative Slew Rate = 181V/s
OUTPUT (2V/div)
Positive Slew Rate = 615V/s Negative Slew Rate = 447V/s TIME (25ns/div) TIME (50ns/div)
Large Signal Response
V = 5V Av = 1 CL = 1000pF
Large Signal Response
V = 9V Av = 1 CL = 1000pF
OUTPUT (2V/div)
Positive Slew Rate = 63V/s Negative Slew Rate = 44V/s
OUTPUT (2V/div)
Positive Slew Rate = 85V/s Negative Slew Rate = 57V/s TIME (250ns/div)
TIME (250ns/div)
December 2001
9
MIC921
MIC921
Micrel
Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10F capacitor in parallel with a 0.1F capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SC70-5 package, like all small packages, has a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85C. The part can be operated up to the absolute maximum temperature rating of 125C, but between 85C and 125C performance will degrade, in particular CMRR will reduce. An MIC921 with no load, dissipates power equal to the quiescent supply current * supply voltage PD(no load) = VV + - VV - IS When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. PD(output stage) = VV + - VOUT IOUT
Total Power Dissipation = PD(no load) + PD(output stage)
Applications Information
The MIC921 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads. Driving High Capacitance The MIC921 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100) in series with the output. Feedback Resistor Selection Conventional op amp gain configurations and resistor selection apply, the MIC921 is NOT a current feedback device. Also, for minimum peaking, the feedback resistor should have low parasitic capacitance, usually 470 is ideal. To use the part as a follower, the output should be connected to input via a short wire. Layout Considerations All high speed devices require careful PCB layout. The following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device.
(
)
(
)
Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 package has a thermal resistance of 450C/W.
Max. AllowablePowerDissipation =
TJ(max) - TA(max) 450C / W
MIC921
10
December 2001
MIC921
Micrel
Package Information
1.90 (0.075) REF 0.95 (0.037) REF
1.75 (0.069) 1.50 (0.059)
3.00 (0.118) 2.60 (0.102)
DIMENSIONS: MM (INCH) 3.02 (0.119) 2.80 (0.110) 1.30 (0.051) 0.90 (0.035) 10 0 0.15 (0.006) 0.00 (0.000) 0.20 (0.008) 0.09 (0.004)
0.50 (0.020) 0.35 (0.014)
0.60 (0.024) 0.10 (0.004)
SOT-23-5 (M5)
0.65 (0.0256) BSC
1.35 (0.053) 2.40 (0.094) 1.15 (0.045) 1.80 (0.071) 2.20 (0.087) 1.80 (0.071) DIMENSIONS: MM (INCH) 1.00 (0.039) 1.10 (0.043) 0.80 (0.032) 0.80 (0.032) 0.18 (0.007) 0.10 (0.004)
0.30 (0.012) 0.15 (0.006)
0.10 (0.004) 0.00 (0.000)
0.30 (0.012) 0.10 (0.004)
SC-70 (C5)
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
USA
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. (c) 2001 Micrel Incorporated
December 2001
11
MIC921


▲Up To Search▲   

 
Price & Availability of MIC921

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X